Interaction between defects in ventilatory and thermoregulatory control in mice lacking 5-HT neurons

Matthew R. Hodges a,b,*, George B. Richerson a,b,c

a Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, United States
b Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, United States
c Veterans Affairs Medical Center, West Haven, CT 06516, United States

A R T I C L E I N F O

Article history:
Accepted 11 August 2008

Keywords:
Hypercapnia
Hypoxia
Control of breathing
Serotonin

A B S T R A C T

We have previously shown that mice with near-complete absence of 5-HT neurons (Lmx1b−/−) display a blunted hypercapnic ventilatory response (HCVR) and impaired cold-induced thermogenesis, but have normal baseline ventilation (VE), core body temperature (Tcore) and hypoxic ventilatory responses (HVR) at warm ambient temperatures (Tamb; 30 °C). These results suggest that 5-HT neurons are an important site for integration of ventilatory, metabolic and temperature control. To better define this integrative role, we now determine how a moderate cold stress (Tamb of 25 °C) influences ventilatory control in adult Lmx1b−/− mice. During whole animal plethysmographic recordings at 25 °C, baseline VE, metabolic rate (VO2), and Tcore of Lmx1b−/− mice were reduced (P < 0.001) compared to wild type (WT) mice. Additionally, the HCVR was reduced in Lmx1b−/− mice during normoxic (~33.1%) and hyperoxic (~40.9%) hypercapnia. However, VE in Lmx1b−/− mice was equal to that in WT mice while breathing 10% CO2, indicating that non-5-HT neurons may play a dominant role during extreme hypercapnia. Additionally, ventilation was decreased during hypoxia in Lmx1b−/− mice compared to WT mice at 25 °C due to decreased Tcore. These data suggest that a moderate cold stress in Lmx1b−/− mice leads to further dysfunction in ventilatory control resulting from failure to adequately maintain Tcore. We conclude that 5-HT neurons contribute to the hypercapnic ventilatory response under physiologic, more than during extreme levels of CO2, and that mild cold stress further compromises ventilatory control in Lmx1b−/− mice as a result of defective thermogenesis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The primary goal of the respiratory control system is to establish a rate of alveolar gas exchange to match metabolic demand, and as a result ventilation (VE) is closely linked to metabolic rate (VO2). However, changing environmental conditions such as ambient temperature (Tamb), O2 availability, or inspired CO2 leads to a shift in homeostatic strategies in an attempt to maintain core body temperature (Tcore) and/or blood gases. VE and VO2 are close to their minimum when Tamb is near or within the thermoneutral zone (~30–32 °C in mice, Gordon, 1985). Lowering Tamb initiates mechanisms aimed at heat conservation and generation, which increases VO2 and consequently VE. These shifts in ventilation and metabolism alter the response strategy to respiratory challenges. For example, in rodents the primary response to hypoxia (and hypercapnia) under warm ambient conditions is a large increase in VE, whereas VO2 is minimally affected (Saiki and Mortola, 1996). In contrast, under cool ambient conditions the predominant effect of hypoxia is to lower VO2 with little or no change in VE (Mortola and Gauthier, 1995). The hypoxia-induced reduction in VO2 results in a decrease in Tcore, which can independently lower the sensitivity of the ventilatory control system depending upon the magnitude of the temperature drop (Maskrey, 1990). For example, severe hypothermia (decreasing Tcore to ~28 °C) lowers both the hypoxic and HCVRs in dogs (although interpretation of these data is complicated by the use of anesthesia) (Natsui, 1969). Smaller decreases in abdominal temperature (from 37 °C to 35 °C) in conscious rats using an abdominal heat exchanger leads to little or no change in the response to hypercapnia, whereas increasing Tcore augments CO2 sensitivity (Maskrey, 1990). In contrast, hypoxia reduces ventilation in animals under these conditions (Maskrey, 1990), suggesting that modest hyperthermia has greater effects on ventilatory responses to hypoxia than hypercapnia.

The integration of respiratory, metabolic and thermoregulatory demands is critical for proper blood gas, metabolic and temperature homeostasis, and the hypothalamus and raphé 5-HT
system may both represent sites for such integration (Waldrop et al., 1986; Hinrichsen et al., 1998; Hodges et al., 2008). The preoptic anterior hypothalamus (POAH) contains warm- and cold-sensitive neurons (Griffin et al., 1996), and receives afferent inputs from peripheral thermoreceptors (Boulant and Hardy, 1974). Additionally, warm-sensitive POAH neurons and lateral hypothalamic hypocretin-producing neurons are also CO2 sensitive, and lesioning orexin neurons blunts the HCVR (Deng et al., 2007; Williams et al., 2007; Wright and Boulant, 2007). Similarly, raphé 5-HT neurons respond to central (Nason and Mason, 2006) and peripheral (Martin-Cora et al., 2000) cooling and augment cold-induced thermogenesis. 5-HT neurons also contribute to central respiratory chemoreception, and facilitate respiratory rhythm generation and respiratory motor output (Al-Zubaidy et al., 1996; Pena and Ramirez, 2002; Richerson, 2004; Hodges and Richerson, 2008).

We have previously examined ventilatory and thermoregulatory control in Lmx1b^{−/−} mice, in which Lmx1b (LIM homeobox transcription factor 1B) is deleted selectively in neurons that express Pet1 (plasmacytoma expressed transcript 1). This leads to complete and specific 5-HT neuron loss and central 5-HT depletion, without affecting other monoamine systems (Zhao et al., 2006, 2007). Lmx1b^{−/−} mice exhibit a severely blunted HCVR and cold-induced thermogenesis despite normal baseline Ve and Vo₂, and a normal HVR (Hodges et al., 2008). Those ventilatory measurements were performed at T_{Amb} of 30.0–30.8 °C (thermoneutral) to prevent confounding effects of changes in T_{Core}. However, the temperature of most animal facilities is maintained near 25 °C, which is below thermoneutral temperature for a mouse. Previous measurements of T_{Core} in Lmx1b^{−/−} mice revealed a failure to maintain T_{Core} at T_{Amb} of 4 °C and 12 °C, but 24-h T_{Core} measurements in their home cages at an T_{Amb} of 25 °C revealed no differences between genotypes (Hodges et al., 2008). Here we examine ventilation at rest, during hypoxia, and during normoxic and hyperoxic hypercapnia in WT and Lmx1b^{−/−} mice at an T_{Amb} of 25 °C using flow-through plethysmography and show that the defects in thermoregulatory and respiratory control induced by 5-HT system dysfunction combine to cause greater deleterious effects on ventilatory control during hypoxia. In addition, we challenged WT and Lmx1b^{−/−} mice to pathologically high (10%) levels of CO2 to determine how important 5-HT neurons are for the HCVR under extreme conditions. All data collected at an T_{Amb} of 30 °C have been reported previously (Hodges et al., 2008), but are included here for direct comparison to those obtained at 25 °C.

2. Methods

2.1. Animal model

The generation of Lmx1b^{−/−} mice has previously been described (Zhao et al., 2006). 22 female age-matched (6–12 months old, see also Table 1) WT (n = 12) and Lmx1b^{−/−} (n = 10) mice were used in this study, WT and Lmx1b^{−/−} littermates were paired during testing when possible.

2.2. Plethysmography

Ventilation and oxygen consumption were measured using standard flow-through plethysmographic techniques (Drorbaugh and Fenn, 1955), as described previously (Hodges et al., 2008). Compressed gas mixtures contained: 21% O₂ with 0, 3, 5, 7, or 10% CO2 (normoxic hypercapnia; balance N₂), 50% O₂ with 0, 3, 5, 7, or 10% CO2 (hyperoxic hypercapnia; balance N₂), or 10% O₂ (hypoxia; balance N₂). Hypercapnia studies consisted of >20 min of baseline, followed by 10-min exposures of 3, 5, 7, and 10% CO2, each interrupted by 10-min baseline measurements. Similarly, hypoxia studies consisted of >20 min of baseline followed by 10 min of 10% O₂. The plethysmograph was set on top of a telemeter energizer/receiver (Model ER-4000, Mini Mitter, Bend, OR) for continuous measurement of core body temperature. Air temperature (25–26 °C) and humidity (Omega HX-93AV, Omega Engineering Inc., Stamford, CT), animal temperature, breathing-induced pressure oscillations (DC002NDR5, Honeywell International, Morristown, NJ), and O₂ and CO₂ concentrations (Models CD-3A (CO₂) and S3A/I (O₂), AEI Technologies Inc., Naperville, IL) were measured continuously, sampled at 100 Hz, digitized using an A/D converter (PCI-6221, National Instruments, Austin, TX) and monitored/stored on disk using a custom-written data acquisition program (Matlab, The MathWorks, Natick, MA). The outflow gases sampled for O₂ and CO₂ concentrations were dried using a dessication column and measured with continuous flow (200 ml/min) through the analyzers. Oxygen consumption was calculated by subtracting the outflow fraction of O₂ from the inflow fraction of O₂, and multiplying the difference by the chamber flow rate (700 ml/min) measured using a flow meter.

2.3. Telemetry probe implantation

The methods for implantation of telemetry temperature probes have been published (Hodges et al., 2008). Briefly, mice were given pre-operative analgesia (meloxicam (1.0 mg/kg I.P.) or buprenorphine (0.1 mg/kg I.P.)) prior to induction and maintenance of anesthesia with 2% (V/V) isoflurane mixed with polyethylene glycol. Telemetric temperature probes (Emitter G2, Minimitter, Bend, OR) were implanted into the abdomen using a ventral midline incision, and the wound was sutured. Mice received 1.7 μg/ml Meloxicam for 2 days, and studied >7 days post-operatively.

2.4. Data analysis

All data were analyzed off-line using custom-written software by an individual blind to the animal genotypes. All samples of continuous ventilatory data segments of 6–10 s duration that did not contain sighs, coughs, sniffling or movement artifacts were selected for analysis during the last 5-min period of exposure to each gas mixture for the normoxic and hyperoxic hypercapnia studies. The average number of 6–10 s segments analyzed under control conditions was 35.0 ± 3.3 and 34.9 ± 2.3 for WT and (Lmx1b^{−/−}) mice, respectively, roughly corresponding to 600–1000 breaths analyzed per animal during the control period. Hypoxia data were analyzed

Table 1

Baseline parameters in WT and Lmx1b^{−/−} mice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wild type</th>
<th>Lmx1b<sup>−/−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (days)</td>
<td>263.6 ± 9.9</td>
<td>264.6 ± 17.5</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>33.0 ± 1.6</td>
<td>28.5 ± 11.9</td>
</tr>
<tr>
<td>T<sub>Core</sub> (°C)</td>
<td>37.9 ± 0.2</td>
<td>36.4 ± 0.2*</td>
</tr>
<tr>
<td>Ve (ml min<sup>−1</sup> g<sup>−1</sup>)</td>
<td>1.32 ± 0.06</td>
<td>1.04 ± 0.06**</td>
</tr>
<tr>
<td>IR (breaths min<sup>−1</sup>)</td>
<td>172.9 ± 0.9</td>
<td>143.6 ± 4.7**</td>
</tr>
<tr>
<td>V<sub>5</sub> (µl breath<sup>−1</sup> g<sup>−1</sup>)</td>
<td>7.71 ± 0.37</td>
<td>7.24 ± 0.33</td>
</tr>
<tr>
<td>T<sub>B</sub> (s<sup>−1</sup>)</td>
<td>0.1 ± 0.004</td>
<td>0.175 ± 0.007**</td>
</tr>
<tr>
<td>V<sub>Te</sub>/T<sub>B</sub> (ml breath<sup>−1</sup> s<sup>−1</sup>)</td>
<td>2.55 ± 0.14</td>
<td>1.20 ± 0.08**</td>
</tr>
<tr>
<td>Vo<sub>2</sub> (ml O<sub>2</sub> min<sup>−1</sup> g<sup>−1</sup>)</td>
<td>0.966 ± 0.003</td>
<td>0.956 ± 0.003*</td>
</tr>
<tr>
<td>V<sub>e</sub>/Vo<sub>2</sub></td>
<td>20.8 ± 1.3</td>
<td>19.0 ± 0.7</td>
</tr>
</tbody>
</table>

All values are mean (±S.E.M.); *age (at the time of study), core temperature (T_{Core}), minute ventilation (Ve), frequency (IR), tidal volume (V_e), inspiratory time (T_B), expiratory time (T_{Te}), ventilatory drive (V_{Te}/T_B), oxygen consumption (Vo₂), convection requirement (V_e/Vo₂). All measurements were obtained while breathing room air at an ambient temperature of 25 ± 0.5 °C. Comparisons were made with an unpaired t-test. (*) Denotes P < 0.05, (**) Denotes P < 0.005.
during minutes 2–10 of the 10-min exposure, and divided into 2–min segments to evaluate the time-course of the response. Inspiratory time (T_i, seconds), expiratory time (T_e, seconds), inter-breath interval (IBI, seconds), used to calculate respiratory frequency (fR), breaths min⁻¹, standard deviation of IBI (seconds), tidal volume (VT, μl), oxygen consumption (V_O2, ml min⁻¹) and minute ventilation (V_E, ml min⁻¹, which is the product of VT and fR), were calculated for all animals under all conditions, with the exception of V_O2 during hyperoxia due to an inability to accurately measure high (>48%) O2 concentrations. VT, V_E and V_O2 were normalized to animal weight.

2.5. Statistics

All data are presented as mean ± S.E.M. Comparisons were made using a two-way ANOVA (SYSTAT 11, Systat Software, Inc., San Jose, CA) and valid pair-wise comparisons using either a paired t-test or t-test assuming unequal variances (Excel, Microsoft Corp.), when appropriate. The threshold for significance was P < 0.05.

All animals were housed and maintained in the Yale Animal Resource Center and all protocols approved by the Yale Animal Care and Use Committee.

3. Results

3.1. Baseline ventilation and metabolic rates are reduced in Lmx1b⁻/⁻ mice

Lmx1b⁻/⁻ mice had significantly reduced mass compared to their WT littermates at the ages studied (Table 1). Therefore, all variables that would be affected by weight differences, such as minute ventilation (V_E), tidal volume (VT), and oxygen consumption (V_O2) were normalized to body weight. In contrast to previous studies where T_Amb was held between 30.0 °C and 30.8 °C, in the current study we made all measurements at an T_Amb of 25 °C. Under these conditions, VT was equal in WT and Lmx1b⁻/⁻ mice, but V_E was reduced in Lmx1b⁻/⁻ mice due to a lower breathing frequency at rest (Table 1, Fig. 1A and C). The lower frequency was due to an increased inspiratory time (T_i), with expiratory time (T_e) equal between genotypes. As a result of the longer T_i, ventilatory drive (VT/T_i) was significantly reduced in Lmx1b⁻/⁻ mice. In addition, both V_O2 and T_Core were significantly lower in Lmx1b⁻/⁻ mice relative to WT mice at rest. Therefore, the decrease in V_E was largely due to the decreased metabolic demand. The V_E/V_O2 ratio was equal at baseline in WT and Lmx1b⁻/⁻ mice (P = 0.18).

3.2. Ventilatory responses to hypoxia and hypercapnia are blunted in Lmx1b⁻/⁻ mice

We challenged WT and Lmx1b⁻/⁻ mice to hypoxia and both normoxic (F_O2 = 0.21) and hypoxic (F_O2 = 0.50) hypercapnia at T_Amb of 25 °C to determine the effects of a moderate cold stress on the response to these challenges.

3.2.1. Normoxic hypercapnia

In normoxia, we found significant effects of both genotype (P < 0.0001) and condition (P < 0.0001) on V_E, fR, T_i, T_e, VT/T_i and body temperature, and condition effects on VT (P < 0.0001; two-way ANOVA; Fig. 1). Specifically, V_E was reduced in Lmx1b⁻/⁻ mice compared to WT mice when breathing room air, 3, 5 and 7% CO2 (Fig. 1A). However, there was no difference in V_E between genotypes breathing 10% CO2 in normoxia (P = 0.39). We also compared the increase in V_E at each level of inspired CO2 relative to the baseline (Fig. 1B), and found that the increase in V_E was significantly reduced breathing 3 and 5% CO2 in Lmx1b⁻/⁻ compared to WT mice. The blunted HCVR was due solely to a smaller frequency response in Lmx1b⁻/⁻ mice (Fig. 1C), with VT increasing equally in WT and Lmx1b⁻/⁻ mice (Fig. 1D). There was also a longer T_i in Lmx1b⁻/⁻ mice (P < 0.0002), and consequently a smaller VT/T_i during all CO2 levels in normoxia (P ≤ 0.02; data not shown). T_Core was significantly reduced in Lmx1b⁻/⁻ (36.2 ± 0.2 °C) relative to WT (37.7 ± 0.1 °C) mice at baseline during normoxia, and remained unchanged from baseline in both genotypes while breathing 3, 5 and 7% CO2 (Fig. 2E). However, T_Core dropped significantly relative to baseline in both genotypes when breathing 10% CO2, likely due to increased evaporative and convective heat loss due to the hyperpnea. Unlike WT mice, T_Core in Lmx1b⁻/⁻ mice was significantly lower at an T_Amb of 25 °C relative to 30 °C during plethysmographic recordings (Fig. 1E).

The V_E/V_O2 ratio in Lmx1b⁻/⁻ mice was equal to WT mice while breathing 3% (P = 0.09), 5% (P = 0.1) and 7% (P = 0.085) CO2 due to reductions in both V_E and V_O2 (Fig. 1F). However, it is important to note that this measure was significantly reduced in Lmx1b⁻/⁻ mice relative to WT mice when measured at an T_Amb of 30 °C (Hodges et al., 2008).

3.2.2. Hypoxic hypercapnia

During hypoxia, there were significant effects of both genotype (P < 0.01) and condition (P < 0.03) on V_E, fR, T_i, TE, VT/T_i and body temperature, and condition effects on VT (P < 0.0001; two-way ANOVA; Fig. 2). Hypoxia decreased baseline V_E in WT mice from 1.32 ± 0.06 ml min⁻¹ g⁻¹ (normoxia) to 1.15 ± 0.06 ml min⁻¹ g⁻¹ (hyperoxia; P = 0.015), but not in Lmx1b⁻/⁻ mice, where V_E in normoxia was 1.50 ± 0.06 ml min⁻¹ g⁻¹ and 1.05 ± 0.04 ml min⁻¹ g⁻¹ in hyperoxia (P = 0.907). However, hypoxia per se had no effect on V_E during hypercapnia relative to normoxia in both WT and Lmx1b⁻/⁻ mice (P > 0.05, two-way ANOVA). Lmx1b⁻/⁻ mice had a lower V_E than WT mice while breathing 3, 5, and 7% CO2, but V_E was not different when breathing room air or 10% CO2 (Fig. 2A). The change in V_E relative to baseline was also reduced in Lmx1b⁻/⁻ mice breathing 3, 5, and 7% CO2, but not 10% CO2 (Fig. 2B). Lmx1b⁻/⁻ mice also had a lower breathing frequency than WT mice under all conditions in hypoxia, with no differences in V_i (Fig. 2C and D). Additionally, T_i was greater (P < 0.02) and V_i/T_i less (P < 0.0006) in Lmx1b⁻/⁻ mice relative to WT mice at rest and at all CO2 levels tested in hypoxia (data not shown). Similar to results in normoxia, T_Core was significantly lower in Lmx1b⁻/⁻ mice (36.4 ± 0.1 °C) relative to WT (37.8 ± 0.1 °C) mice at baseline during hypoxia (Fig. 2E). T_Core also dropped significantly from baseline when breathing 10% CO2 in both genotypes. However, there were no differences in T_Core between genotypes at an T_Amb of 30 °C (Fig. 2E).

3.2.3. Hypoxia

In contrast to our previous experiments in which T_Amb was 30 °C (Hodges et al., 2008), there were several differences in the response of Lmx1b⁻/⁻ and WT mice to hypoxia when T_Amb was 25 °C (Fig. 3). There were significant effects of both genotype and condition on V_E, fR, T_i, T_e, and body temperature, and there were genotype effects on V_i/T_i (P < 0.05; ANOVA). Specifically, V_E (Fig. 3A), V_i/T_i (Fig. 3B), V_E/V_O2 (Fig. 3D) and V_i/T_i were reduced throughout minutes 2–10 of the hypoxic challenge in Lmx1b⁻/⁻ mice, with no effects on V_i (Fig. 3C). Interestingly, we did not observe a significant decrease in V_E or V_O2 in Lmx1b⁻/⁻ mice relative to WT mice during the control period before the hypoxia challenges as seen prior to the hypercapnia challenges, despite a similar difference in T_Core. This may be related to variability in the time required for some animals to shift from an exploratory, active behavior to quiet wakefulness. However, both WT and Lmx1b⁻/⁻ mice significantly decreased V_O2 during hypoxia, with no difference between genotypes (Fig. 3E). This result indi-
Fig. 1. The normoxic hypercapnic ventilatory response and body temperature are reduced in Lmx1bf/f mice at 25 °C. (A) Minute ventilation (VE), (B) change in ventilation from baseline, (C) respiratory frequency (fR), (D) tidal volume (VT), (E) core temperature (Tcore) and (F) oxygen consumption (VO2) at rest and breathing 0, 3, 5, 7 and 10% inspired CO2 in normoxia (FiO2 = 0.21) at room temperature (RT: 25 °C; A–D, F) or thermoneutral (TN: 30 °C, Hodges et al., 2008) in WT (n = 12) and Lmx1bf/f mice (n = 10). Two-way ANOVA (genotype and condition, or ambient temperature as factors) or unpaired t-test, (*) denotes P < 0.05 for WT versus Lmx1bf/f, (#) denotes P < 0.05 for 10% CO2 versus baseline. Data are mean ± S.E.M.

cates that the lower VE/VO2 during hypoxia was due to a larger reduction in VE than in VO2. Tcore in both WT and Lmx1bf/f mice significantly decreased over time during hypoxia, but the initial temperature was lower in Lmx1bf/f mice compared to WT mice (Fig. 3F).

We then compared these data to those obtained from WT and Lmx1bf/f mice studied at an Tamb of 30 °C (Hodges et al., 2008). For comparison, we normalized the data obtained during hypoxia at both ambient temperatures to the control period, and expressed it as % of control. We found no differences in VE (% control; Fig. 4A) or ΔVO2 (relative to room air breathing; Fig. 4B) between WT and Lmx1bf/f mice during hypoxia studied at an Tamb of either 25 or 30 °C. However, Tamb had significant effects on the HVR. At 25 °C both genotypes responded to hypoxia with a small increase in VE and large decrease in VO2. In contrast, at 30 °C they responded to hypoxia with a large increase in VE and small decrease in VO2. We also found no difference in VE/VO2 (% control) between WT and Lmx1bf/f mice during hypoxia at 30 °C, but VE/VO2 was lower in Lmx1bf/f mice compared to WT mice during hypoxia at 25 °C due to the smaller increase in VE (Fig. 4C). Tcore was not different between WT and Lmx1bf/f mice studied at 30 °C while breathing room air and during hypoxia, and Tcore did not change in either genotype in response to hypoxia (Fig. 4D). In contrast, WT and Lmx1bf/f mice studied at an Tamb of 25 °C both had a lower Tcore compared to an Tamb of 30 °C, and at the lower Tamb there was a significant decrease in Tcore over time in response to hypoxia.

4. Discussion

Mice in which CNS 5-HT neurons have been genetically deleted (Lmx1bf/f: Zhao et al., 2006) have previously been characterized, and have severe deficits in the HCVR and cold-induced thermoge-
necessity (Hodges et al., 2008). When studied at an T_{Amb} of 30°C, these mice have normal baseline V_E, V_O_2, T_{Core} and HVR. We show here that when studied under mild cold stress (T_{Amb} of 25°C combined with convective heat loss due to airflow in the plethysmograph), $Lmx1b^{+/+}$ mice continue to display an attenuated HCVR, but now also have decreased baseline V_E, V_O_2, T_{Core}, and ventilatory response to hypoxia. These results are consistent with the conclusion that the primary defects in $Lmx1b^{+/+}$ mice are a reduced HCVR and thermogenic capabilities, and that the decreased baseline ventilation and HVR are secondary to dysfunctional thermogenesis. Thus, a mild cold stress further compromises ventilatory control as a consequence of the thermoregulatory deficit in mice with 5-HT system dysfunction.

4.1. Methodological considerations

Mammals respond to a decreased T_{Amb} by initiating mechanisms that drive heat conservation and generation, which increases V_O_2 and consequently ventilation (Mortola, 2005). Indeed, both WT and $Lmx1b^{+/+}$ mice had increased baseline ventilation and V_O_2 under conditions of mild cold stress relative to measurements at 30°C, but V_O_2 and T_{Core} were lower in $Lmx1b^{+/+}$ mice compared to WT mice in these cooler conditions. This indicates that 25°C is below the lower critical temperature for these mice, and is consistent with our previous observations of thermoregulatory dysfunction (Hodges et al., 2008). However, we previously found no difference in T_{Core} in WT and $Lmx1b^{+/+}$ mice measured during 24-h recordings in their home cages at 25°C. This indicates that a mildly decreased T_{Amb} is not sufficient alone to decrease T_{Core} in $Lmx1b^{+/+}$ mice. It is therefore important to consider the design of the plethysmographic measurements.

We used a flow through plethysmographic chamber with a flow rate of 700 ml min$^{-1}$ to ensure rapid gas changes while retaining a large enough drop in O_2 concentration to allow accurate V_O_2 measurements. This high flow rate would be expected to cause substantial convective heat loss, and a greater thermal challenge...
Fig. 3. Lmx1bf/f/p mice have a blunted hypoxic ventilatory response at 25 °C. (A) Minute ventilation (\(V_e\)), (B) respiratory frequency (fR), (C) tidal volume (\(V_t\)), (D) (\(V_e/\dot{V}O_2\)) ratio, (E) (\(\dot{V}O_2\)), and (F) core temperature (\(T_{Core}\)) breathing room air (RA) and during minutes 2–10 of a 10-min hypoxia challenge (FI \(O_2 = 0.1\)) in WT (n = 9) and Lmx1bf/f/p mice (n = 7). Two-way ANOVA (genotype and time as factors) and unpaired t-test, (*) denotes \(P < 0.05\) for WT versus Lmx1bf/f/p mice. Data are mean ± S.E.M.

than would occur by decreasing \(T_{Amb}\) alone. The attenuated thermogenic response to cold would lead to an exaggerated drop in \(T_{Core}\) in Lmx1bf/f/p mice. In addition, the small dimensions of the plethysmograph chamber allowed for free, but somewhat restricted movement, which itself can affect \(T_{Core}\) and \(\dot{V}O_2\) (Cinelli et al., 2007). This could influence \(T_{Core}\) in a variety of ways, including increasing heat generation due to stress-induced activation of the hypothalamic-pituitary-adrenal axis and catecholamine release (Harris et al., 2002), while decreasing heat generation due to reduced motor activity. The convective airflow combined with lower \(T_{Amb}\), restricted movement, and the known thermogenic defects in Lmx1bf/f/p mice likely contributed to a significantly lower \(T_{Core}\).

4.2. Primary and secondary effects of an absence of 5-HT neurons

In our previous work (Hodges et al., 2008) we found that the primary effect of near-complete absence of 5-HT neurons was a blunted hypercapnic response and impaired cold-induced thermogenesis. In contrast, there was no effect on baseline \(V_e\), \(\dot{V}O_2\), and \(T_{Core}\). Here, we show that under cool conditions Lmx1bf/f/p mice display reduced \(V_e\), \(\dot{V}O_2\), and \(T_{Core}\) at baseline, and decreased \(V_e/\dot{V}O_2\) ratio during hypoxia. We conclude that the lower ventilation at rest and during hypoxia under conditions of moderate cold stress is due to the decreased \(T_{Core}\) in Lmx1bf/f/p mice, which is secondary to a primary defect in heat generation (Hodges et al., 2008). While the concept of decreased body temperature blunting the ventilatory response to hypoxia is not novel, these data suggest that when the 5-HT system is not working normally a modest thermal challenge has secondary deleterious effects on ventilatory control as a result of the primary defect in thermogenesis.

Proper coupling of ventilation and metabolism is particularly important during a hypoxic challenge, where the integrated response normally includes both hyperpnea and hypometabolism. At an \(T_{Amb}\) near the thermoneutral range, WT and Lmx1bf/f/p mice respond to hypoxia with a robust hyperpnea and only a small decrease in metabolism, whereas when \(T_{Amb}\) is cooler both genotypes exhibited only a small increase in ventilation and a large decrease in \(\dot{V}O_2\). In addition, both genotypes maintained a constant \(T_{Core}\) during hypoxia at 30 °C, but \(T_{Core}\) decreased significantly in both genotypes during hypoxia at 25 °C. This suggests that Lmx1bf/f/p mice retain the ability to shift strategies in changing ambient conditions, but are clearly less effective in maintaining \(T_{Core}\). In addition, the data suggest that 5-HT neurons do not contribute directly to the HVR or hypoxia-induced hypothermia per se, suggesting that the mechanism by which hypoxia inhibits \(\dot{V}O_2\) (and subsequently decreases \(T_{Core}\)) is independent of raphé 5-HT neurons.
Hodges et al., 2008). Note that both genotypes shift ventilatory and metabolic strategies during hypoxia at different versus 30°C (C) (V̇O2). Two-way ANOVA (genotype and time, or factors) and unpaired t-test, (*) denotes P<0.05 for WT versus Lmx1b−/− mice, (~) denotes P<0.05 for 25°C versus 30°C. Data are mean ± S.E.M.

4.3. Effects on the hypercapnic ventilatory response

At an Tamb of 30°C, the HCVR of Lmx1b−/− mice is reduced by 42.2% in normoxia and by 51.6% in hyperoxia (Hodges et al., 2008). Under those conditions, there were no differences between Lmx1b−/− and WT mice in V̇O2, or Tcore at baseline or during hypercapnia, indicating that the deficit in the HCVR is a direct result of the absence of 5-HT and/or 5-HT neurons, and not an indirect effect from altered thermoregulation. Here we found that ventilation while breathing 3, 5 and 7% inspired CO2 was reduced by 33.1% in normoxia and by 40.9% in hyperoxia at an Tamb of 25°C, slightly less but similar to our previous findings. This result is similar to previous reports showing a greater effect of mild hypothermia on the HVR compared to the HCVR (Maskrey, 1990).

We previously found that relative to wild type mice, Lmx1b−/− mice have a significantly smaller increase in ventilation when challenged with 5 and 7% CO2, but there was no difference in ventilation at baseline or in response to 3% CO2 at 30°C (Hodges et al., 2008). Here we found that the ventilatory response to 3, 5 and 7% CO2 was less in Lmx1b−/− than WT mice at 25°C. However, there was no difference in ventilation between genotypes breathing 10% CO2 in both normoxia and hyperoxia at 25°C. These data support the hypothesis that 5-HT neurons make their greatest contribution to central chemoreception at low levels of CO2 that would occur under physiological conditions, consistent with their high degree of intrinsic chemosensitivity to small changes in pH in vitro (Richerson, 1995; Wang et al., 2001, 2002; Bradley et al., 2002; Richerson, 2004). The data are also consistent with the hypothesis that non-5-HT neurons make their greatest contributions under conditions of severe hypercapnia (Nattie, 1999).

In contrast to our previous findings at an Tamb of 30°C, the decreased ventilation during hypercapnia was not accompanied by a significant reduction in the V̇E/V̇O2 ratio, indicating that under moderate cold stress Lmx1b−/− mice retain the ability to generate hyperpnea proportional to metabolism during hypercapnia. The reason that different results were obtained at the two temperatures is unclear, but there are several considerations. One possibility is that a subset of non-5-HT chemoreceptors (including peripheral chemoreceptors) play a greater role at colder temperature as a result of an interaction between temperature regulation and chemoreception. Another possibility is that cold exposure leads to an increase in tonic respiratory drive from non-5-HT sources, which could mask the established primary deficit in V̇E relative to metabolism (Hodges et al., 2008). A third is that 5-HT neurons mediate a decrease in oxygen consumption in response to hypercapnia during cold exposure but not under thermoneutral conditions. Finally, it is important to note that it is difficult to accurately measure O2 consumption in a small species such as a mouse, and even small errors in measurement of V̇O2 could lead to inability to detect real differences. The p values comparing these data were close to the threshold for significance, preventing us from ruling out a small, but real deficit in the V̇E/V̇O2 ratio of Lmx1b−/− mice. However, the existing data suggest that there may be a greater degree of compensation for the loss of 5-HT neurons under thermal stress relative to thermoneutral conditions. The source of this compensation is unclear, but it may include an increase in the contribution of peripheral or other central chemoreceptors.

Consistent with developmental compensation, hyperoxia decreased resting ventilation in WT mice relative to normoxia, but had no effect on resting ventilation in Lmx1b−/− mice. This suggests that there may be altered carotid body function or central processing of carotid body input in response to the loss of 5-HT neurons. If there is compensation by peripheral chemoreceptors (or possibly by non-5-HT central chemoreceptors) this would lead to an underestimation of the role of 5-HT neurons in the HCVR. As discussed previously (Hodges et al., 2008), this role of 5-HT neurons in the HCVR likely includes both a direct role in sensing CO2 and an indirect role in enhancing chemosensitivity of non-5-HT neurons.

4.4. Summary and conclusions

Ventilation and Tcore can be regulated normally in Lmx1b−/− mice under conditions of minimal environmental stress, but both...
become abnormal when challenged. This is consistent with the idea that 5-HT neurons play a major role in respiratory and thermoregulatory homeostasis under conditions of environmental stress. Abnormalities in the 5-HT system have been identified in sudden infant death syndrome (SIDS) (Paterson et al., 2006), which is thought to be due to the inability of a vulnerable infant to maintain homeostasis when challenged by an exogenous stressor (Kinney, 2005). Based on these new, and previous (Richerson et al., 2004; Hodges et al., 2008) data, we conclude that: (1) 5-HT neurons contribute significantly to the HVR and cold-induced thermogenesis; (2) 5-HT neurons participate in the integration of ventilatory and metabolic demands; and, (3) A mild thermal stress can lead to worsening of the deficits in ventilatory control that are caused by an abnormal 5-HT system.

Acknowledgements

We thank Drs. E.E. Nattie, R.A. Darnall, H.C. Kinney, J.C. Leiter, D. Bartlett, J.A. Daubenspeck and S.M. Dymecik for their insights and thoughtful discussions. We also thank Joe Murillo, Yin Jun, Elisa Yin and Dr. Zhou-Feng Chen for animal genotyping, protocols and primers. This work was supported by the Parker B. Francis Foundation (M.R.H.), NIH P01 HD 36379, NIH HD052772, and the VAMC (G.B.R.).

References

