Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B

Running title: Hematopoietic SEC23B deficiency

Rami Khoriaty*, Matthew P. Vasievich*, Morgan Jones, Lesley Everett, Jennifer Chase, Jiayi Tao, David Siemieniak, Bin Zhang, Ivan Maillard, David Ginsburg

1Department of Internal Medicine, University of Michigan, Ann Arbor, MI; 2Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI; 3Life Sciences Institute, University of Michigan, Ann Arbor, MI; 4Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH; 5Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI; 6Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI

Matt Vasievich’s current address: Department of Dermatology, Cleveland Clinic, Cleveland, OH.

Jiayi Tao’s current address: Case Western Reserve University, Cleveland, OH

Corresponding author:

Email: ginsburg@umich.edu

Phone: 734-647-4808

Fax: 734-936-2888

* Authorship note: Rami Khoriaty and Matt P. Vasievich contributed equally to the work.

1 MCBAccepts, published online ahead of print on 28 July 2014

Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Abstract word count: 196

Article length for abstract, introduction, results, discussion, and figure legends: 28,079 characters (excluding spaces).

Word count for the Materials and Methods section: 1,659.

Combined word count for the Introduction, Results, and Discussion sections: 2,810.
Abstract

Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease of ineffective erythropoiesis characterized by increased bi/multi-nucleated erythroid precursors in the bone marrow. CDAII results from mutations in SEC23B. The SEC23 protein is a core component of the coat protein complex II-coated vesicles, which transport secretory proteins from the endoplasmic reticulum to the Golgi apparatus. Though the genetic defect underlying CDAII has been identified, the pathophysiology of this disease remains unknown. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration, with this early mortality limiting evaluation of the adult hematopoietic compartment. We now report that mice with SEC23B-deficiency restricted to the hematopoietic compartment survive normally and do not exhibit anemia or other CDAII characteristics. We also demonstrate that SEC23B-deficient hematopoietic stem cells (HSC) do not exhibit a disadvantage at reconstituting hematopoiesis when compared directly to wild type HSC in a competitive repopulation assay. Secondary bone marrow transplants demonstrated continued equivalence of SEC23B-deficient and WT HSC in their hematopoietic reconstitution potential. The surprising discordance in phenotypes between SEC23B-deficient mice and humans may reflect an evolutionary shift in SEC23 paralog function and/or expression, or a change in a specific COPII cargo critical for erythropoiesis.
Introduction

Congenital dyserythropoietic anemia type II (CDAII), also known as Hereditary Erythroblastic Multinuclearity with a Positive Acidified-Serum lysis test (HEMPAS), is an autosomal recessive disease characterized clinically by mild to moderate anemia resulting from ineffective erythropoiesis (median hemoglobin 9.1-9.8 g/dL), the presence of bi-/multi-nucleated erythroblasts in the bone marrow (BM), jaundice from indirect hyperbilirubinemia, and splenomegaly (1, 2). CDAII is distinguished from other congenital anemias by a characteristic double membrane appearance on red blood cell (RBC) electron microscopy resulting from residual endoplasmic reticulum (ER) (3), a faster migrating and narrower band on SDS-PAGE for the RBC membrane protein band 3, and lysis of RBCs in some, but not all, acidified normal sera (Ham’s test) (1, 2).

CDAII results from homozygous or compound heterozygous mutations in $SEC23B$ (4), one of the two mammalian paralogs of $SEC23$. SEC23 is a core component of the coat protein complex II (COPII)-coated vesicles that transport cargo proteins from the ER to the Golgi apparatus (2, 5). More than 60 different $SEC23B$ mutations have been identified in CDAII patients (4, 6-14), affecting every domain of the protein (7). No patient with two nonsense $SEC23B$ mutations has been reported, suggesting that complete loss of SEC23B may be lethal. Homozygosity for specific missense mutations in $SEC23A$, the paralog of $SEC23B$, results in cranio-lenticulo-sutural-dysplasia (15), thought to be due to defective collagen secretion.

Despite the identification of the genetic defect, the molecular mechanism by which deficiency of SEC23B results in the CDAII phenotype remains unknown (2). Nearly all
proteins destined for secretion from the cell or export to the cell membrane or lysosome (~1/3 of the mammalian proteome) are dependent on COPII vesicles for transport from the ER to Golgi. Thus, it is surprising that deficiency of a key, ubiquitously expressed component of the COPII coat, SEC23B, results in a phenotype apparently restricted to the red blood cell. Reports of curative allogeneic bone marrow transplantation for CDAII suggest that the mechanism responsible for the erythroid defect is intrinsic to the hematopoietic compartment (9, 16, 17).

We previously reported that mice homozygous for a Sec23b gene-trap allele (Sec23bgt/gt) die within 24 hours of birth, exhibiting degeneration of the pancreas and other professional secretory tissues (18). The perinatal lethality precluded assessment of adult hematopoietic function in these mice. We now report that chimeric mice with SEC23B-deficiency restricted to the hematopoietic compartment can support the normal production of adult RBCs, with no apparent abnormality in hematopoiesis. Competitive hematopoietic stem cell (HSC) transplantation assays also fail to demonstrate a disadvantage of Sec23bgt/gt HSC at reconstituting hematopoiesis compared to WT HSC.
Materials and Methods

Generation of SEC23B-deficient mice

Two Sec23b mutant mouse lines, one with a gene-trap (gt) cassette insertion into Sec23b intron 19 (Sec23bgt), and the second with a conditional gt insertion in Sec23b intron 4 (Sec23bcgt), were generated as previously described (Fig. 1A and B) (18). All Sec23bgt mice used in this study were generated from heterozygous mice backcrossed to C57BL/6J mice for > 10 generations. The Sec23bcgt allele was derived from C57BL/6J ES cells (18), and maintained on a pure background by backcrosses exclusively to C57BL/6J. Sec23bcgt/+ mice were crossed to a mouse ubiquitously expressing FLPe under the control of the human β-actin promoter (β-actin FLP) (Jackson laboratory stock # 005703) to excise the gt cassette and generate the Sec23b floxed allele (Sec23bfl), with exons 5 and 6 flanked by loxP sites (Fig. 1B). Mice with complete deficiency of SEC23B (Sec23b-) were generated by crossing the Sec23bfl allele to a mouse expressing Cre recombinase driven by an EIIA promoter (EIIA Cre) (Jackson laboratory stock # 003724). Deletion of Sec23b exons 5 and 6 results in a frameshift and downstream stop codon in exon 7. Mice were housed at the University of Michigan and all procedures were in accordance with the regulations of the Animal Care and Use Committee.

PCR genotyping

Genotyping for the Sec23bfl allele was performed as previously described (18). The Sec23bfl allele was genotyped by a three-primer polymerase chain reaction (PCR) assay using a forward primer (F1) located in Sec23b intron 4 upstream of the insertion.
site and two reverse primers, one (cgtB1) located in the gene-trap insertion cassette
between the two FRT sites and the second (cgtR1) located in intron 4 downstream of
the FRT sites. This PCR reaction results in a 475 base pair (bp) product from the wild
type (WT) allele (F1:cgtR1) and a 344 bp product from the Sec23b^{cgt} allele (F1:cgtB1),
which are resolved on 2% (weight/volume) agarose gel electrophoresis (Fig. 1C).

Genotyping for the Sec23b^{fl} and Sec23b⁻ alleles was performed with a three-primer
competitive PCR assay consisting of the forward primer F1, a second forward primer
(F2) located in intron 6 between the two loxP sites, and a common reverse primer (R1)
located in intron 6 downstream of the insertion site. This reaction produces a 235 bp
product from the WT allele (F2:R1), a 269 bp product from the Sec23b^{fl} allele (F2:R1),
and a 336 base pair product from the Sec23b⁻ allele (F1:R1), which are resolved by 3%
agarose gel electrophoresis (Fig. 1D). Locations of the genotyping primers are indicated
in figures 1A and 1B. Primer sequences are shown in Table 1.

Fetal liver cell (FLC) transplants

Timed matings were performed by intercrossing Sec23b^{+/gt} mice or Sec23b^{+/−} mice. The
following morning, designated as E0.5, matings were separated. Pregnant female mice
were euthanized at E17.5 post-coitus. Recovered fetuses were separated and placed
individually in Petri dishes on ice under sterile conditions. A tail biopsy was obtained
from each fetus for genotyping. Fetal livers were individually disrupted and dispersed
cells were suspended in RPMI 1640 (Gibco) supplemented with 2% fetal bovine serum
(FBS) at 4°C. FLC were washed twice in RPMI 1640 + 2% FBS, and then suspended in
65% RPMI 1640, 25% FBS, and 10% DMSO, frozen at -80°C overnight, and stored in
vapor phase liquid nitrogen at -186°C.
Six to twelve week old C57BL/6J recipient mice were lethally irradiated with two doses of 550 rads separated by 3 hours in a Cs Gammacell 40 Exactor irradiator (MDS Nordion). Three hours following completion of irradiation, frozen WT and SEC23B-deficient FLC (Sec23bggt/gt or Sec23b+/− FLC) were thawed in a 37°C water bath. 10⁶ cells were suspended in 300 µl RPMI 1640 with 2% FBS and injected into the retro-orbital venous sinus of recipient mice. For each transplant experiment, control mice were injected with media only. No control mice survived beyond 12 days. Transplanted mice were provided with acidified water (pH = 2.35) for 3 weeks post-transplantation.

Competitive FLC transplants

C57BL/6J mice expressing high levels of green fluorescent protein (GFP) in all tissues including hematopoietic cells (19) (under the control of the human ubiquitin C promoter (UBC-GFP mice)) were obtained from the Jackson Laboratory (stock # 004353). FLC from crosses between male mice homozygous for the UBC-GFP transgene (UBC-GFPtg/tg) and female C57BL/6J mice were harvested at day 17.5 post-coitus and stored as described above. UBC-GFPtg/+ FLC were mixed in a 1:1 ratio with either Sec23bggt/gt FLC (experimental arm) or WT FLC (control arm) and transplanted into lethally irradiated C57BL/6J recipients as described above.

Bone marrow cells were isolated from the hind limbs of each chimeric mouse. The number of GFP(-) cells per 2 hind limbs was calculated for each hematopoietic lineage by multiplying the ratio of GFP(-)/GFP(+) cells in each lineage by the total number of cells per lineage. The number of GFP(-) cells per two hind limbs should be proportional
to the contribution of GFP(-) cells to each lineage, corresponding to Sec23bgt/gt cells in the experimental arm and WT cells in the control arm.

GFP(-) mature myeloid cells (Mac1\(^+\) Gr1\(^+\)) were FACS sorted from bone marrows harvested from chimeric recipient mice. Myeloid cells were genotyped for Sec23b.

For secondary transplants, whole BM cells were harvested from these chimeric recipient mice twenty weeks after the competitive FLC transplant, and 2 \times 10^6 cells were transplanted into lethally irradiated secondary C57BL/6J recipients.

Complete blood counts (CBC) and BM analysis

Twenty microliters of blood were drawn from the retro-orbital venous sinuses of mice anesthetized with isoflurane. Blood was diluted 1:10 in 5% Bovine Serum Albumin (BSA) in Phosphate Buffered Saline (PBS) pH 7.4. CBC were performed on the Advia120 whole blood analyzer (Siemens) according to the manufacturer's instructions.

Following pentobarbital-induced anesthesia, BM was flushed from femurs and tibias of each mouse using either Hank's balanced salt solution (Gibco) or RPMI 1640, supplemented with 5% FBS. BM cells were used for flow cytometry (below) and a subset (~ 160,000 cells) was collected by centrifugation in a cytocentrifuge (Thermo scientific cytocentrifuge), stained with the HEMA 3 kit (Fisher), and examined under light microscopy. BM cytospins were evaluated by an investigator blinded to mouse genotype.

Flow cytometry
Peripheral blood or BM single cell suspensions were incubated with various antibodies. The following antibodies were obtained from BioLegend, eBiosciences, or BD Biosciences: anti-Ter119, Gr1 (RB6-8C5), Mac1 (M1/70), CD3 (145-2C11), CD16/CD32 (2.4G2), CD45R/B220 (RA3-6B2), CD150 (TC15-12F12.2), Sca1 (D7), CD117 (2B8), CD48 (BCM1), CD19 (6D5), TCRβ (H57-597), CD8 (53-6.7), CD11c (N418), CD4 (RM4-4), NK1.1 (PK136), and TCRγ/δ (GL3). The following antibody cocktail was used to exclude lineage positive (Lin+) cells: anti-Ter119, CD11b, CD11c, Gr1, C220, CD19, CD3, TCRβ, TCRγ/δ, CD8, and NK1.1. Stained cells were analyzed by flow cytometry using flow cytometers FACSCanto II, FACSARia II, or FACSARia III (Becton Dickinson Biosciences). Dead cells were excluded with DAPI where appropriate (Sigma). Files were analyzed with FlowJo (Tree Star).

Cell sorting

Ter119+ erythroid precursors were sorted from reconstituted bone marrows of recipient mice using FACSARia II. Ter119+ erythroid precursors were also purified from E17.5 FLC. Mononuclear cells prepared from E17.5 livers were incubated with APC-conjugated anti-Ter119+ antibody (Biolegend) for 30 minutes on ice, washed twice with PBS containing 4% FBS, and then treated with anti-APC conjugated magnetic beads (Miltenyi biotech) for 15 minutes. Cells were then washed once and suspended in PBS + 4% FBS. Ter119+ positive cells were collected using LS MACS separation columns (Miltenyi biotech) mounted on a magnet stand according to manufacturer’s instructions.

RBC ghost preparation

Peripheral blood or BM single cell suspensions were incubated with various antibodies. The following antibodies were obtained from BioLegend, eBiosciences, or BD Biosciences: anti-Ter119, Gr1 (RB6-8C5), Mac1 (M1/70), CD3 (145-2C11), CD16/CD32 (2.4G2), CD45R/B220 (RA3-6B2), CD150 (TC15-12F12.2), Sca1 (D7), CD117 (2B8), CD48 (BCM1), CD19 (6D5), TCRβ (H57-597), CD8 (53-6.7), CD11c (N418), CD4 (RM4-4), NK1.1 (PK136), and TCRγ/δ (GL3). The following antibody cocktail was used to exclude lineage positive (Lin+) cells: anti-Ter119, CD11b, CD11c, Gr1, C220, CD19, CD3, TCRβ, TCRγ/δ, CD8, and NK1.1. Stained cells were analyzed by flow cytometry using flow cytometers FACSCanto II, FACSARia II, or FACSARia III (Becton Dickinson Biosciences). Dead cells were excluded with DAPI where appropriate (Sigma). Files were analyzed with FlowJo (Tree Star).

Cell sorting

Ter119+ erythroid precursors were sorted from reconstituted bone marrows of recipient mice using FACSARia II. Ter119+ erythroid precursors were also purified from E17.5 FLC. Mononuclear cells prepared from E17.5 livers were incubated with APC-conjugated anti-Ter119+ antibody (Biolegend) for 30 minutes on ice, washed twice with PBS containing 4% FBS, and then treated with anti-APC conjugated magnetic beads (Miltenyi biotech) for 15 minutes. Cells were then washed once and suspended in PBS + 4% FBS. Ter119+ positive cells were collected using LS MACS separation columns (Miltenyi biotech) mounted on a magnet stand according to manufacturer’s instructions.
Seventy microliters of peripheral blood were centrifuged at 2300 g. The pellet was washed twice with PBS (pH 7.4) and then lysed by suspension in ghost lysis buffer (5 mM Na2PO4, 1.3 mM EDTA, pH = 7.6) containing protease inhibitor (1 protease inhibitor tablet (Roche, stock # 11873580001) per 50 ml ghost lysis buffer). Lysates were centrifuged at 16,000 g and the supernatants containing the RBC membrane fraction were collected and washed 4-6 times in ghost lysis buffer. RBC ghosts were stored at -80°C in lysis buffer.

Electron microscopy

Cells were fixed in 2.5% glutaraldehyde in 0.1M Sorensen’s buffer (pH 7.4) overnight at 4°C. After 2 rinses with 10-20 milliliters of Sorensen’s buffer, cells were fixed with 1% osmium tetroxide in 0.1M Sorensen’s buffer, rinsed in double distilled water, and then en bloc stained with aqueous 3% uranyl acetate for 1 hour. Cells were dehydrated in ascending concentrations of ethanol, rinsed twice in 100% ethanol, and embedded in epoxy resin. Samples were ultra-thin sectioned at 70 nm in thickness and stained with uranyl acetate and lead citrate. Sections were examined on a Philips CM100 electron microscope at 60kV. Images were recorded digitally using a Hamamatsu ORCA-HR digital camera system operated with AMT software (Advanced Microscopy Techniques Corp., Danvers, MA).

Western blot

Proteins were separated by SDS gel electrophoresis using 4-20% tris-glycine gels (Invitrogen) and tris-glycine running buffer or using 4-12% Bis-Tris gels (Invitrogen) and MOPS running buffer (Invitrogen). Proteins were then transferred onto nitrocellulose
membranes (BioRad). For X-ray development, membranes were blocked in 5% milk/TBST (weight/volume), probed with primary antibody, washed 3 times in TBST, probed with peroxidase coupled secondary antibodies (Thermo Scientific), washed 3 times in TBST, and developed using Western Lightning Plus-ECL (Perkin-Elmer).

Quantitative western blots were performed using Odyssey (LICOR Biosciences) according to the manufacturer’s instructions. Secondary antibodies utilized were IRDye 680RD or IRDye 800 CW. Band intensities were quantified using the Odyssey software. SEC23A band intensity was normalized to beta-actin or RalA.

Antibodies

Anti-SEC23B and anti-SEC23A antibodies were generated in rabbit against peptides LTKSAMPVQQARPAQPQEQP and DNAKYVKKGTKHFEA respectively. Anti-Band3 and anti-GAPDH antibodies were obtained from Millipore. Anti-actin antibody was obtained from Santa Cruz.

qRT-PCR

RNA was isolated with Trizol. Reverse transcription was performed using the Superscript First-Strand Synthesis System for RT-PCR (Invitrogen) with random primers. Real-time PCR amplification was performed in triplicates with Power SYBR Green PCR Master Mix (Applied Biosystems) using the Applied Biosystems 7900HT Fast real-time PCR System. Relative gene expression was calculated using the 2^(-ΔΔCT) method. Beta-actin or GAPDH were used as internal controls. Two samples of each genotype were analyzed, each in triplicate. qPCR primer sequences are listed in table 1.
Results

Transplantation of SEC23B-deficient HSC does not result in a CDAII phenotype

SEC23B deficient mice die perinatally, exhibiting degeneration of their professional secretory tissues but no evidence of anemia at birth (18). To assess the impact of SEC23B-deficiency on adult mouse hematopoietic function, equal numbers of FLC collected from either Sec23bgt/gt or WT E17.5 embryos were transplanted into lethally irradiated C57BL/6J recipient mice. Livers harvested from Sec23bgt/gt and WT E17.5 embryos exhibited no significant differences in total cell counts or numbers of long-term HSCs (ckit+ Sca1+ CD48- CD150+ Lin-) (20) measured by flow cytometry (Fig. 2A, B, and C). Hemoglobin (Fig. 3A) and hematocrit (Fig. 3B) levels measured at weeks 6, 8, 12, and 25 post-transplantation were all the within the normal range and indistinguishable between mice transplanted with Sec23bgt/gt FLC and recipients of WT FLC, as were spleen weights (Fig. 3C) and bone marrow myeloid to erythroid ratios (Fig. 3D). There was also no increase in the number of bi/multi-nucleated RBC precursors observed in the recipients of Sec23bgt/gt BM (Fig. 3E).

Characteristic RBC abnormalities in humans with CDAII include a “double membrane” appearance on transmission electron microscopy, and narrower band size together with a shift in the mobility of membrane protein band 3 on sodium dodecylsulfate-polyacrylamide gel electrophoresis. RBC from mice transplanted with Sec23bgt/gt FLCs did not exhibit either of these abnormalities (Fig. 4A-C).

SEC23B deficient FLC and WT FLC are equivalent in reconstituting erythropoiesis
To assess for a more subtle hematopoietic defect, SEC23B deficient FLC were tested for their ability to reconstitute hematopoiesis as compared to WT FLC in a competitive repopulation assay. In this experiment, Sec23b^{gt/gt} FLC were mixed with UBC-GFP^{tg/+} Sec23b^{+/+} FLC in a 1:1 ratio and co-transplanted into lethally irradiated C57BL/6J recipient mice. Following engraftment, hematopoietic cells from recipient mice were characterized by GFP expression to distinguish cells of Sec23b^{gt/gt} or WT FLC origin. Control mice were co-transplanted with a 1:1 ratio of WT FLCs cells with or without the UBC-GFP^{tg/+} transgene.

Over the course of 18 weeks of follow-up, WT FLC exhibited no competitive advantage at reconstituting erythropoiesis compared to SEC23B-deficient FLC (Fig. 5A). Similarly, no defects were observed in the ability of Sec23b^{gt/gt} FLC to differentiate into neutrophils (Fig. 6A) or lymphocytes (Fig. 6B and C).

Eighteen weeks following transplantation, reconstituted bone marrows and thymi were harvested from transplant recipients and the relative contribution of Sec23b^{gt/gt} and WT cells to each hematopoietic compartment was evaluated. Erythroid cells were stratified by forward scatter and CD71 expression to identify primitive progenitors (larger cells expressing higher levels of CD71), mature cells (smaller cells expressing low levels of CD71), and erythroid cells in intermediate stages of development (average or small size cells expressing high levels of CD71) (21). Sec23b^{gt/gt} and WT cells contributed similarly to all populations of erythroid cells examined (Fig. 5B).

The contribution of GFP(-) Sec23b^{gt/gt} cells to the populations of long-term HSC (Fig. 6D) and myeloid cells (Fig. 6E) in the BM, and to all subgroups of T-lymphocytes (Fig.
6F) in the thymus was equivalent to that of GFP(+) WT cells. There was a trend for some subsets of T-lymphocytes to be under-represented ($Sec23b^{+/+}$ CD8+ TCRβ immature single positive cells, CD4+ CD8+ double positive cells, and CD4+ T-lymphocytes); however, this did not reach statistical significance after correction for multiple observations. In contrast, BM $Sec23b^{gt/gt}$ B-lymphocytes (Fig. 6G) were under-represented relative to their WT counterparts ($p = 0.005$).

To exclude the possibility that the reconstituted GFP(-) hematopoietic cells in recipient mice were derived from host reconstitution rather than $Sec23b^{gt/gt}$ FLC, GFP(-) mature myeloid cells (Mac1+ Gr1+) were FACS sorted from bone marrows of mice co-transplanted with GFP(-) $Sec23b^{gt/gt}$ FLC and GFP(+) WT FLC. The genotype of the isolated myeloid cells was confirmed to be $Sec23b^{gt/gt}$ (Fig. 7).

SEC23B deficient HSC and WT HSC are equivalent in their hematopoietic reconstitution potential

To further test for the hematopoietic reconstitution potential of $Sec23b^{gt/gt}$ HSC, bone marrows chimeric for $Sec23b^{gt/gt}$ and WT HSC were harvested from the competitive FLC transplant recipients (described above) and transplanted into secondary WT recipients. Over the course of 18 weeks of follow-up, the contribution of $Sec23b^{gt/gt}$ and WT HSC to the reconstituted erythroid, myeloid, B-cell and T-cell compartments was equivalent (Fig. 8A, and Fig. 9A-C). Bone marrows from a subset of secondary transplant recipients were analyzed at 26 weeks post-transplantation. Persistence of GFP(-) $Sec23b^{gt/gt}$ erythroid cells in all stages of erythroid differentiation (Fig. 8B) and $Sec23b^{gt/gt}$ long-term HSC (Fig. 8C) was observed.
A second Sec23b null allele confirms the absence of a RBC phenotype in SEC23B-deficient mice

Sec23b^{gt/gt} murine embryonal fibroblasts express a SEC23B/βGEO fusion protein resulting from the gene-trap insertion into intron 19 of Sec23b. Though SEC23B/βGEO co-immunoprecipitates with SEC24 (binding partner for SEC23) (18), a similar pancreatic phenotype was observed for Sec23b^{gt/gt} mice and a second targeted allele. However, to rule out any residual function of the Sec23b^{gt} allele masking a hematopoietic phenotype, another set of transplant experiments was performed with FLCs derived from a second Sec23b mutant allele, Sec23b[−] (excision of exons 5 and 6 (Fig. 1)), which should result in a protein truncated after amino acid 130 (the full length SEC23B protein contains 767 amino acids).

FLC were harvested from E16.5 Sec23b^{−/−} embryos and transplanted into lethally irradiated C57BL/6J recipients ubiquitously expressing GFP (UBC-GFP^{tg/+}). Reconstituted hematopoietic cells in recipient mice were GFP(-), confirming donor stem cell engraftment. At 2 months and 5 months post-transplantation, transplant recipients of Sec23b^{−/−} FLC exhibited normal RBC counts (Fig. 10A), hemoglobin (Fig. 10B), and hematocrit (Fig. 10C) levels, indistinguishable from recipients of control FLCs. RBC ghosts prepared from reconstituted Sec23b^{−/−} peripheral blood demonstrated no evidence of an alteration in band 3 glycosylation compared to control ghosts by western blot (Fig. 10D). Additionally, Ter119+ erythroid precursors isolated from Sec23b^{−/−} FLC did not exhibit the “double membrane” appearance on transmission electron microscopy (Fig. 10 E) that is characteristic of human CDAII.
BM SEC23B deficient erythroid cells are normally distributed among stages of erythroid development.

Ter119+ erythroid cells were determined by flow cytometry to comprise 37% (standard deviation (SD) = 17%) and 42% (SD = 18%) of the total number of live BM cells in mice transplanted with Sec23b⁻/⁻ and WT FLC, respectively (Fig. 10D). Mice transplanted with Sec23b⁻/⁻ FLC did not exhibit an increase in the percentage of BM bi-/multi-nucleated RBC precursors (Fig. 10E).

To test for stage-specific defects in erythroid maturation resulting from murine SEC23B-deficiency, BM Ter119+ erythroid cells from mice transplanted with either Sec23b⁻/⁻ or WT FLC were stratified by Ter119 expression, CD71 expression, and forward scatter into 5 distinct populations of erythroid development, designated stages I to V (22). Stage I is the earliest stage and consists predominantly of proerythroblasts. Erythroid cells progress through stages I, II, III, and IV in chronological order, and ultimately reach the final stage, stage V, which encompasses primarily mature RBCs.

The distribution of BM erythroid cells among the 5 stages of erythroid development was comparable in mice transplanted with Sec23b⁻/⁻ FLC and control mice transplanted with WT FLC (Fig. 10F).

SEC23A protein level is increased in SEC23B deficient erythroid precursors.

Anti-SEC23A and anti-SEC23B anti-peptide antibodies were generated and tested for specificity to their respective paralogs (Fig. 11A and B). SEC23B protein was undetectable by western blot in Sec23b⁻/⁻ FLC and in sorted Ter119+ Sec23b⁻/⁻ erythroid precursors (Fig. 11C and D). Sec23b mRNA isolated from Sec23b⁻/⁻ erythroid
precursors was markedly reduced, likely due to nonsense mediated decay resulting from the exon 5-6 deletion and resulting frameshift (23) (Fig. 11E). To assess any potential change in SEC23A protein levels in response to loss of SEC23B, quantitative western blot analysis was performed, revealing an ~50% increase in the steady state levels of SEC23A protein in SEC23B-deficient compared to WT erythroid cells (Fig. 11F). However, no change in the mRNA expression of the four Sec24 paralogs, the two Sar1 paralogs or TRAPPC3 were observed between SEC23B-deficient and WT erythroid cells as measured by qPCR (Fig. 11G).
Discussion

Homozygous or compound heterozygous SEC23B mutations in humans result in CDAII, with the clinical phenotype restricted to a characteristic set of RBC abnormalities, and no reported non-hematologic clinical manifestations. In contrast, SEC23B-deficient mice die perinatally, exhibiting degeneration of multiple professional secretory tissues, with apparently normal RBCs. However, the failure of these mice to survive beyond the immediate perinatal period precluded detailed RBC analysis and characterization of adult hematopoiesis. To address this issue, we performed FLC transplantation experiments to generate chimeric mice with SEC23B-deficiency restricted to the hematopoietic compartment. Surprisingly, no RBC abnormalities characteristic of human CDAII could be detected in these animals. In addition to the absence of anemia, SEC23B-deficient RBCs lacked the duplicated membrane and band 3 glycosylation defects that are characteristic of CDAII in humans. Erythroid hyperplasia and multinucleated RBC precursors were also absent from the BM. Competitive transplants and secondary transplant experiments also failed to uncover even a subtle defect in erythropoiesis or reconstitution of myeloid cells and T-lymphocytes. SEC23B deficient B lineage cells appeared under-represented in the BMs of mice transplanted with equal numbers of Sec23b^{gt/gt} and WT FLC. However, this finding was not associated with a reduction in the number of SEC23B null B-lymphocytes in the peripheral blood of these chimeric animals, thus its significance remains unclear. Furthermore, secondary recipients of BM harvested from these mice did not exhibit a decreased contribution of the peripheral blood Sec23b^{gt/gt} B-lymphocytes compared to their WT counterparts. We confirmed the absence of SEC23B protein in Sec23b^{−/−} erythroid precursors, with qPCR.
analysis of mRNA isolated from Sec23b-/- erythroid precursors demonstrating a marked reduction in Sec23b mRNA, likely due to nonsense mediated decay (23).

SEC23B is ubiquitously expressed in various tissues (18, 24, 25) and is an integral component of COPII vesicles, which facilitate the transport of ~ 8000 proteins from the ER to the Golgi apparatus (26). Despite this broad and fundamental function, SEC23B-deficiency in humans results in a phenotype restricted to the RBC compartment.

Though deficiencies of the inner COPII coat components, SEC23, SEC24, and SAR1, are all lethal in yeast, the corresponding COPII proteins for which deficiencies have been reported in mice or humans show a wide range of phenotypes. SEC23A deficiency in humans (discussed below) results in cranio-lenticulo-sutural-dysplasia (15), whereas SEC24A, SEC24B and SEC24D deficiency in mice result in low plasma cholesterol (27), chraniorachischisis (28), and early embryonic lethality (29), respectively. SAR1B mutations in humans result in a disease of lipid malabsorption and chylomicron accumulation in the enterocytes (30). It is interesting to note that other genetic deficiencies affecting a large portion of the proteome also selectively disrupt the erythroid compartment, including mutations in genes encoding several ribosomal proteins resulting in Diamond-Blackfan syndrome. These observations suggest that the demanding process of RBC production may be particularly sensitive to perturbations of the basic cell machinery.

The mouse is a well established model for the study of human hematopoiesis (31), with numerous gene targeted mice closely recapitulating the erythropoietic phenotypes of the corresponding human diseases (32-36). The lack of conservation in SEC23B deficient
phenotypes between humans and mice is particularly surprising, given the previous

The mammalian genome encodes 2 SEC23 paralogues, SEC23A and SEC23B. In
humans, SEC23A mutations result in cranio-lenticulo-sutural-dysplasia (15), an
autosomal recessive disease thought to result from abnormal collagen secretion. This
disease is characterized by skeletal abnormalities, late closure of fontanelles,
dysmorphic features, and sutural cataracts. Though SEC23A-deficient mice have not
been reported, Sec23a deficient zebrafish exhibit abnormal cartilage development
reminiscent of the human phenotype (15, 37). The SEC23A and SEC23B proteins
exhibit a high degree of sequence similarity (~85% identical at the amino acid level),
suggesting that the 2 SEC23 paralogs may overlap extensively in function and that the
disparate phenotypes of SEC23B deficiency in humans and mice could be due to a shift
in tissue-specific expression patterns during mammalian evolution. Consistent with this
hypothesis, recently reported analyses of SEC23A/B in cultured erythroid progenitors
(38) and transcriptomes for human and murine erythroid cells at several stages of
terminal maturation (39, 40), demonstrate different patterns of SEC23A/SEC23B
expression in humans and mice. This is evident particularly in the latest stage of
erthroid maturation, with SEC23B the predominant paralog in humans and SEC23A in
mice. However, an additional unique function for SEC23B in the human erythroid
compartment that is not required in mice, cannot be excluded.

Of note, western blot analysis demonstrates an increase of steady state SEC23A
protein levels in SEC23B-deficient erythroid progenitors, suggesting a balance between
the SEC23A and B cytoplasmic pools, potentially mediated via SEC23/24 heterodimer
formation. This is similar to the increase in SEC24B observed in hepatocytes of SEC24A deficient mice (27). However, there was no apparent change in the mRNA expression of other core components of the COPII vesicles.

Reports of curative bone marrow transplantation for CDAII (9, 16) indicate that the pathologic defect in this disease is confined to a transplanted cell. However, the mechanism by which human SEC23B-deficiency results in the unique erythropoietic phenotype of CDAII remains unknown. The role of SEC23 in ER-to-Golgi transport suggests that CDAII results from the impaired secretion of one or more key cargo proteins that depend on SEC23B for export from the ER. Mutation of *scl4a1* (the gene encoding band 3) in zebrafish results in increased binucleated erythroblasts, suggesting that band 3 could be the critical cargo, with CDAII resulting from a selective block in its transport to the membrane (41). However, humans with band 3 mutations exhibit hereditary spherocytosis and other RBC shape disorders, but not CDAII (42, 43). The observation that RBCs from CDAII patients are lysed in some but not all acidified normal sera (Ham’s test) (1, 2), may provide a clue as to the identity of the critical SEC23B dependent secretory cargo(s).

SEC23B interacts directly with SEC31, a component of the outer layer of the COPII coat. SEC23B also interacts with Bet3 (44), a component of the tethering complex TRAPPI, and with p150Glued (45), a component of the dynactin complex. Whether these direct SEC23B interactions contribute to the pathophysiology of CDAII is unknown.
In conclusion, we have shown that mice with hematopoietic deficiency of SEC23B support a normal erythroid compartment. Future studies aimed at understanding the functional overlap between SEC23A and SEC23B, as well as the specific protein cargos dependent on SEC23A/B for exit from the ER, should provide further insight into the pathophysiology of CDAII.
Acknowledgments

This work was supported by National Institute of Health Grants R01 HL039693 and P01-HL057346 (DG), R01 AI091627 (IM), and R01 HL094505 (BZ). David Ginsburg is a Howard Hughes Medical Institute investigator.

The authors would like to thank Sasha Meshinchi and Jeff Harrison from the Microscopy and Image-Analysis Laboratory at the University of Michigan for help with electron microscopy. The authors would like to acknowledge Elizabeth Hughes, Keith Childs, and Thomas Saunders for preparation of gene targeted mice and the Transgenic Animal Model Core of the University of Michigan’s Biomedical Research Core Facilities. Core support was provided by the University of Michigan Cancer Center (P30 CA046592).

Authorship and conflict of interest:

Contribution: RK, MV, and DG conceived the study and designed experiments. RK, MV and MJ performed most of the experiments. BZ, LE, JT, and DS contributed to the execution of the experiments. RK and DG wrote the paper. All authors contributed to the integration and discussion of the results.

Conflict of interest disclosure: The authors declare no competing conflicts of interest.
REFERENCES

27

Figure Legends:

Figure 1. Sec23b mutant alleles. (A) Schematic of the first Sec23b gene-trap allele demonstrating a gene-trap insertion into intron 19. (18) SA, splice acceptor cassette; β-Geo, β-galactosidase-neo fusion; pA, poly-adenylation sequence. (B) The Sec23b conditional gene-trap allele (Sec23b^{gt}) contains a gene trap insertion in intron 4 flanked by 2 FRT sites. Mice carrying this allele were crossed to β-actin FLP transgenic mice. Mice heterozygous for the resulting Sec23b floxed allele (Sec23b^{+/fl}) were crossed to EIIACre transgenic mice to excise exons 5 and 6, and generate the Sec23b null allele (Sec23b⁻). Gray boxes represent exons with exon number indicated in the box. F1, F2, R1, cgtB1, and cgtR1 represent Sec23b genotyping primers. En2 SA, splice acceptor of mouse En2 exon 2; IRES, encephalomyocarditis virus internal ribosomal entry site; lacZ, *E. coli* β-galactosidase gene; pA, SV40 polyadenylation signal; β_{act:neo}, human β-actin promoter-driven neomycin cassette. (C) A three-primer PCR assay (F1, cgtB1, cgtR1) distinguishes the Sec23b^{gt} allele (F1:cgtB1, 344 bp) and the WT allele (F1:cgtR1, 475 bp). (D) A three-primer PCR assay (F1, F2, R1) distinguishes the alleles: Sec23b⁺ (F2:R1, 235 bp), Sec23b^{fl} (F2:R1, 269 bp), and Sec23b⁻ (F1:R1, 336 bp). Location of the primers are indicated in Figures 1A and 1B. The gene structures depicted in figures 1A and 1B are not according to scale.

Figure 2. FACS analysis of E17.5 Sec23b^{gt/gt} and WT FLC. (A) Livers were harvested from 3 Sec23b^{gt/gt} and 3 WT E17.5 embryos. Flow cytometry on FLC single cell suspensions demonstrated equivalent total number of recovered cells from Sec23b^{gt/gt} and WT fetal livers. Each liver is represented by 1 point, and horizontal lines indicate mean value for each group. (B) The number of long-term hematopoietic stem cells (c^{kit}+)
Sca1+ CD48- CD150+ Lin-) was equivalent for Sec23b^gt/gt and WT fetal livers. (C) FACS distributions for cell sorts used to calculate long-term hematopoietic stem cells in B.

Figure 3. Transplant recipients of Sec23b^gt/gt FLC do not exhibit CDAII. Mice transplanted with Sec23b^gt/gt FLC demonstrated equivalent (A) hemoglobin and (B) hematocrit levels as compared to mice transplanted with control WT FLC over the course of 25 weeks of post-transplantation follow-up (p > 0.05 for all time points). N = 5-7 mice per group. Error bars represent standard deviation. (C) Spleens harvested from transplant recipients of Sec23b^gt/gt and WT FLC were equivalent in weights. Recipients of Sec23b^gt/gt FLC exhibited equivalent (D) myeloid : erythroid ratios and (E) number of bi/multi-nucleated RBC precursors (evaluated independently by two investigators) compared to control mice transplanted with WT FLC. Each dot represents results from one mouse. Horizontal lines indicate means and error bars indicate standard deviation.

Figure 4. RBC from mice transplanted with Sec23b^gt/gt FLC do not exhibit a band 3 glycosylation defect or a double RBC membrane. (A) RBC ghosts were isolated from Sec23b^gt/gt and WT RBC and fractionated on sodium dodecylsulfate-polyacrylamide gel electrophoresis. Coomassie blue stain revealed no difference in the appearance of the RBC membrane protein band 3 in Sec23b^gt/gt RBC ghosts. Each lane represents a sample from a different individual mouse. (B) Similarly, band 3 protein appeared indistinguishable on western blotting between Sec23b^gt/gt and WT RBC ghosts. (C) Sec23b^gt/gt RBC lack the “double membrane” appearance on transmission electron microscopy characteristic of human CDAII. RBC were evaluated at three different magnifications, illustrated in the right lower corner of each figure. Arrows indicate RBC membrane.
Figure 5. Sec23b^{gt/gt} FLC do not exhibit a competitive disadvantage at reconstituting erythropoiesis compared to WT FLC. C57BL/6J mice were co-transplanted with a 1:1 mix of GFP(-) Sec23b^{gt/gt} FLC and UBC-GFP^{Tg+} Sec23b^{+/-} FLC in a competitive transplant assay (experimental arm). Following engraftment, the percent of GFP(-) cells in the peripheral blood/BM of recipient mice indicate the percent of cells derived from Sec23b^{gt/gt} FLC. Control mice were co-transplanted with a 1:1 mix of WT GFP(-) and GFP^{Tg+} Sec23b^{+/-} FLC. (A) By peripheral blood FACS, Ter119+ RBC persisted at a stable level throughout the 18-weeks follow-up period, suggesting no competitive advantage to WT FLC compared to Sec23b^{gt/gt} FLC at reconstituting erythropoiesis. (B) In the BM, the contribution of GFP(-) Sec23b^{gt/gt} cells to the populations of Ter119+ erythroid precursors was equivalent to the contribution of the GFP(-) WT cells in the control arm. Erythroid cells were further stratified by forward scatter and CD71 expression to identify more primitive progenitors as larger cells expressing higher levels of CD71, more mature smaller cells with lower expression of CD71, and intermediate cells. Sec23b^{gt/gt} cells contributed to all subsets of erythroid cells.

Figure 6. Analysis of peripheral blood and BM hematopoietic compartments of mice co-transplanted with a 1:1 mix of GFP(-) Sec23b^{gt/gt} FLC and UBC-GFP^{Tg+} Sec23b^{+/-} FLC (experimental arm) and control mice co-transplanted with a 1:1 mix of GFP(-) and GFP^{Tg+} Sec23b^{+/-} FLC. By peripheral blood FACS, (A) Mac1+ Gr1+ neutrophils, (B) B220+ B-lymphocytes, and (C) CD3+ T-lymphocytes were found to be derived from both Sec23b^{gt/gt} and WT FLC. The Sec23b^{gt/gt} peripheral blood cells
persisted at a stable level throughout the 18-week follow-up period, suggesting no competitive advantage to WT FLC compared to Sec23b^{gt/gt} FLC at reconstituting hematopoiesis. In the BM, the contribution of GFP(-) Sec23b^{gt/gt} FLC to (D) the long-term hematopoietic stem cells (cKIt+ Sca1+ CD48- CD150- Lin-), and to (E) myeloid cells (Mac1+ GR1+) in the experimental arm was equivalent to the contribution of the GFP(-) WT cells in the control arm. (F) Similarly, the contribution of GFP(-) Sec23b^{gt/gt} T-lymphocytes in the thymus was equivalent to that of GFP(-) WT cells in the control arm. *There was a trend for some subsets of GFP(-) Sec23b^{gt/gt} T-lymphocytes to be under-represented; however this did not reach statistical significance after correction for multiple observations using the Holm-Sidak method or the Bonferroni method. ISP, immature single positive cells; DP, CD4+ CD8+ double positive T-lymphocytes; NS, not significant. (G) In contrast, GFP(-) Sec23b^{gt/gt} CD19+ CD220+ BM B-lymphocytes were under-represented. Each point represents one mouse. Lines represent mean values for each group and error bars indicate standard deviation.

Figure 7. Reconstituted GFP(-) hematopoietic cells in mice co-transplanted with a 1:1 mix of GFP(-) Sec23b^{gt/gt} FLC and UBC-GFP^{Tg+} Sec23b^{+/+} FLC were derived from Sec23b^{gt/gt} FLC and not from host reconstitution. GFP(-) myeloid cells isolated from mice transplanted with a 1:1 ratio of UBC-GFP^{Tg+} FLC and Sec23b^{gt/gt} FLC and from control mice transplanted with 1:1 ratio of UBC-GFP^{Tg+} FLC and WT FLC were genotyped for Sec23b^{gt/gt}. Six mice from each group were examined. Each lane represents the genotype of myeloid cells isolated from a single mouse. Genotype of a Sec23b^{gt/gt} control DNA is shown. The lower and upper bands correspond to the expected PCR products for the Sec23b WT and gt alleles, respectively.
Figure 8. Secondary bone marrow transplantation experiments demonstrate continued equivalence of Sec23b^{gt/gt} and WT FLC at reconstituting erythropoiesis. BMs harvested from mice chimeric for GFP(-) Sec23b^{gt/gt} and GFP(+) WT hematopoietic cells were transplanted into lethally irradiated secondary recipients (experimental arm). Control mice were transplanted with BMs harvested from mice chimeric for GFP(-) and GFP(+) WT hematopoietic cells. (A) By peripheral blood FACS, the contribution of Sec23b^{gt/gt} GFP(-) cells to the population of Ter119+ RBC in the experimental arm was equivalent to the contribution of WT GFP(-) cells in control mice over the course of 18 weeks of follow-up. Peripheral blood analysis was performed on N = 13-15 mice per group. Error bars represent standard deviation. Bone marrow cells were isolated from both hind limbs of each secondary transplant recipient mouse. The contribution of Sec23b^{gt/gt} GFP(-) (B) Ter119+ erythroid cells at various stages of differentiation and (C) hematopoietic stem cells (ckit+ Sca1+ CD48- CD150- Lin-) in the experimental mice was equivalent to the contribution of WT GFP(-) cells in the control arm. Each point represents one mouse. Lines represent mean values for each group. P values were calculated by Student's t-test.

Figure 9. Secondary bone marrow transplantation experiments demonstrate continued equivalence of Sec23b^{gt/gt} and WT FLC at reconstituting hematopoiesis. BMs harvested from mice chimeric for GFP(-) Sec23b^{gt/gt} and GFP(+) WT hematopoietic cells were transplanted into lethally irradiated secondary recipients (experimental arm). Control mice were transplanted with BMs harvested from mice chimeric for GFP(-) and GFP(+) WT hematopoietic cells. Peripheral blood was obtained from recipient mice. By FACS, the contribution of Sec23b^{gt/gt} GFP(-) cells to the
population of (A) Mac1+ Gr1+ neutrophils, (B) B220+ B-lymphocytes, and (C) CD3+ T-lymphocytes in the experimental arm was equivalent to the contribution of WT GFP(-) cells in control mice over the course of 18 weeks of follow-up. n = 13-15 mice per group. Error bars represent standard deviation.

Figure 10. Mice transplanted with Sec23b−/− FLC do not exhibit an erythroid phenotype. Lethally irradiated UBC-GFPtg/+ mice were transplanted with GFP(-) FLC harvested from either Sec23b−/− or WT E.16.5 embryos. Reconstituted hematopoietic cells in recipient mice were GFP(-), confirming donor engraftment. Recipients of Sec23b−/− FLC had indistinguishable (A) RBC counts, (B) hemoglobin, and (C) hematocrit levels as compared to control recipients of WT FLC. (D) Sec23b−/− RBC ghosts did not exhibit a band 3 glycosylation defect by western blot, (E) nor did Ter119+ erythroid precursors demonstrate a “double membrane” by transmission electron microscopy. (F) By FACS analysis, Ter119+ erythroid cells comprised 36.67% (± 16.69 SD) and 41.56% (± 17.68 SD) of total live BM cells harvested from mice transplanted with Sec23b−/− and WT FLC, respectively. (G) Mice transplanted with Sec23b−/− FLC did not exhibit an increase in the percent of bi/multi-nucleated RBC precursors. (H) BM erythroid compartments were stratified by forward scatter and CD71 expression into 5 stages of erythroid development (stages I through V in chronological order) (22). The distribution of erythroid cells among stages I through V was comparable in mice transplanted with Sec23b−/− FLC and mice transplanted with WT FLC. Error bars indicate standard deviation. Means and standard deviation are indicated by horizontal lines.

Figure 11. SEC23A protein level is increased in Sec23b−/− erythroid precursors. Lysates from COS cells transfected with GFP-tagged SEC23A or SEC23B were
examined by immunoblotting with antipeptide antibodies raised against (A) SEC23A or (B) SEC23B, demonstrating a high degree of specificity of these antibodies for their respective paralogs. Western blotting of whole cell lysates from (C) WT control and Sec23b−/− FLC and (D) sorted control and Sec23b−/− Ter119+ erythroid precursors demonstrated no detectable SEC23B protein in Sec23b−/− cells. (E) qPCR analysis showed a marked reduction of Sec23b mRNA in Sec23b−/− compared to WT Ter119+ cells. (F) SEC23A protein level normalized to β-actin or to RalA was increased in Ter119+ erythroid precursors compared to WT controls, as determined by quantitative western blot analysis (p = 0.029 and 0.030 for normalization to β-actin and RalA respectively). (G) mRNA levels measured by qPCR for the four Sec24 paralogs, the two Sar1 paralogs, and TRAPPC3 were all indistinguishable between Sec23b−/− and WT Ter119+ erythroid cells.
<table>
<thead>
<tr>
<th>Primer</th>
<th>5' → 3' Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec23b F1</td>
<td>ATAGACCAGGCTGGCCTCAGTC</td>
</tr>
<tr>
<td>Sec23b cgt B1</td>
<td>CCACAACGGGTCTTCTTCTGTT</td>
</tr>
<tr>
<td>Sec23b cgt R1</td>
<td>CGAGCAGCAGAGACACCAAT</td>
</tr>
<tr>
<td>Sec23b R</td>
<td>CAAGTGAGTGCCCTCTCACA</td>
</tr>
<tr>
<td>Sec23b F2</td>
<td>AACAGCCAGTGACTAGGA</td>
</tr>
<tr>
<td>Sec23b qPCR F</td>
<td>CCCTACGCTCTTCAGATTGTC</td>
</tr>
<tr>
<td>Sec23b qPCR R</td>
<td>CGGGCAAAATGGTGCTTATAA</td>
</tr>
<tr>
<td>Sec24 a qPCR F</td>
<td>GAGCAGAGTAGGGAGCGTTCT</td>
</tr>
<tr>
<td>Sec24 a qPCR R</td>
<td>TTCTTCAACCCAAAGCATCA</td>
</tr>
<tr>
<td>Sec24 b qPCR F</td>
<td>GACCCGAGAAGGCCTT</td>
</tr>
<tr>
<td>Sec24 b qPCR R</td>
<td>TTTGCCAACCAATGTAGAAA</td>
</tr>
<tr>
<td>Sec24 c qPCR F</td>
<td>TTATGGGGTTCGGACAAG</td>
</tr>
<tr>
<td>Sec24 c qPCR R</td>
<td>CTCATATAGAAACGGGCAAAGAAAT</td>
</tr>
<tr>
<td>Sec24 d qPCR F</td>
<td>CTCATATAGAAACGGGCAAAGAAAT</td>
</tr>
<tr>
<td>Sec24 d qPCR R</td>
<td>TCGTACCAAGGCAGACCT</td>
</tr>
<tr>
<td>Sar1 a qPCR F</td>
<td>TCGTGGGGCATGAGCA</td>
</tr>
<tr>
<td>Sar1 a qPCR R</td>
<td>GCCATTAATCGCTGGAGATAA</td>
</tr>
<tr>
<td>Sar1 b qPCR F</td>
<td>GGGTGGGCACCTTAGA</td>
</tr>
<tr>
<td>Sar1 b qPCR R</td>
<td>TGCCATTGATAGCAAGGAGGT</td>
</tr>
<tr>
<td>TRAPPC3 qPCR F</td>
<td>GCACGGAGAGCAAGAATAA</td>
</tr>
<tr>
<td>TRAPPC3 qPCR R</td>
<td>GGTGACAGCCGCTTCTAGG</td>
</tr>
<tr>
<td>beta-actin qPCR F</td>
<td>GATCTGGCACAACACCTT</td>
</tr>
<tr>
<td>beta-actin qPCR R</td>
<td>GGGTGGTGAAGGTCTCAGA</td>
</tr>
<tr>
<td>GAPDH qPCR F</td>
<td>TGTGCTCGTGCTGATCTGAG</td>
</tr>
<tr>
<td>GAPDH qPCR R</td>
<td>ACCACCTTTCTTGTACACTCAT</td>
</tr>
</tbody>
</table>

Table 1. Genotyping and qPCR primer sequences.
A

Sec23b\(^+\) (wild type)

\[\begin{array}{ccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & 18 & 19 & 20 \\
\end{array} \]

Sec23b\(^{gt}\) (gene-trap)

\[\begin{array}{ccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & 18 & 19 & 20 \\
\end{array} \]

\(\beta \)

Sec23bcgt (conditional gene-trap)

\[\begin{array}{ccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & 18 & 19 & 20 \\
\end{array} \]

Sec23bfl (floxed)

\[\begin{array}{ccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & 18 & 19 & 20 \\
\end{array} \]

Sec23b\(^-\) (null)

\[\begin{array}{ccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & 18 & 19 & 20 \\
\end{array} \]

B

\[\begin{array}{ccccccccccc}
F1 & cgtR1 & F2 & R1 \\
\end{array} \]

C

\[\begin{array}{ccccccccccc}
500 \text{ bp} & 400 \text{ bp} & 300 \text{ bp} \\
\end{array} \]

\((+) \) band: 475 bp

\((-) \) band: 344 bp

D

\[\begin{array}{ccccccccccc}
300 \text{ bp} & 200 \text{ bp} \\
\end{array} \]

\((+) \) band: 235 bp

\((-) \) band: 269 bp

\((fl) \) band: 336 bp
Cell number per total liver

\[\text{Sec23b}^{+/+} \]

\[\text{Sec23b}^{-/-} \]

\[p = 0.55 \]

Number of L-HSC per total liver

\[\text{Sec23b}^{+/+} \]

\[\text{Sec23b}^{-/-} \]

\[p = 0.45 \]

Sec23b

19.7

6.4

18.1

15.9

6.03

16

15.9

Sec23b

ckit

Lin

Sca1

CD150

CD48

Sec23b

ckit

Lin

Sca1

CD150

CD48

Sec23b

ckit

Lin

Sca1

CD150

CD48
A

% Peripheral blood GFP (-) RBC

Sec23b+/+ and UBC-GFPtg/+ FLC
Sec23bgt/gt and UBC-GFPtg/+ FLC

Weeks post-transplant

B

Number of BM GFP (-) erythroid cells per 2*10^6 BM cells

Sec23b+/+ and UBC-GFPtg/+ FLC
Sec23bgt/gt and UBC-GFPtg/+ FLC

CD71 high FSC high
CD71 high FSC mid
CD71 high FSC low
CD71 low FSC low

Erythroid cells in different stages of maturation
A

% Peripheral blood GFP (-) RBC

Weeks post-transplant

- Sec23b+/+ and UBC-GFPtg/+ FLC
- Sec23bgt/gt and UBC-GFPtg/+ FLC

B

Number of BM GFP (-) erythroid cells per 2 hind limbs

Ter 119+ CD71 high
Ter 119+
CD71 mid
Ter 119+
CD71 low

Erythroid cells in different stages of maturation

p=0.29
p=0.20
p=0.53

C

Number of GFP (-) LT-HSC per 2 hind limbs

p=0.19

- Sec23b+/+ and UBC-GFPtg/+ FLC
- Sec23bgt/gt and UBC-GFPtg/+ FLC
A

% Peripheral blood GFP (-) B-lymphocytes

Sec23b+/+ and UBC-GFPtg/+ FLC
Sec23bgt/gt and UBC-GFPtg/+ FLC

Weeks post-transplant

B

% Peripheral blood GFP (-) B-lymphocytes

Sec23b+/+ and UBC-GFPtg/+ FLC
Sec23bgt/gt and UBC-GFPtg/+ FLC

Weeks post-transplant

C

% Peripheral blood GFP (-) T-lymphocytes

Sec23b+/+ and UBC-GFPtg/+ FLC
Sec23bgt/gt and UBC-GFPtg/+ FLC

Weeks post-transplant
Sec23b-/- vs. Sec23b+/+

A RBC counts (x 10^7 cells/microliter)

- *Sec23b-/-*
- *Sec23b+/+

B Hemoglobin (g/dl)

- *Sec23b-/-*
- *Sec23b+/+

C Hematocrit (%)

- *Sec23b-/-*
- *Sec23b+/+

D Band 3 and β-actin

E X 34,000

- *Sec23b-/-*
- *Sec23b+/+

F % erythroid cells in bone marrow

- *Sec23b-/-*
- *Sec23b+/+

G % bi/multi-nucleated RBC precursors

- *Sec23b-/-*
- *Sec23b+/+

H % out of total erythroid cells

- *Sec23b-/-*
- *Sec23b+/+

Erythroid stage: I, II, III, IV, V

p=0.74